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The nature of upstream blocking in uniformly 
stratified flow over long obstacles 

By PETER G. BAINES A N D  FIONA GUEST 
CSIRO Division of Atmospheric Research, Aspendale, Victoria 3195, Australia 

(Received 27 September 1986 and in revised form 25 May 1987) 

The general method described in Baines 1988 has been applied to stratified flows of 
finite depth over long obstacles where the flow initially has uniform horizontal 
velocity. The fluid consists of a finite number of homogeneous layers of equal 
thickness and with equal density increments. This represents the state of continuous 
stratification with constant density gradient as closely as possible, for a given 
number of layers. Two-, three-, four- and sixty-four-layered models are studied in 
detail. The results are expressed in terms of the initial Froude number Po (F ,  = U/e ,  
where U is the fluid speed and is the speed of the fastest long internal wave mode 
in the fluid a t  rest) and the obstacle height. I n  general, introduction of an obstacle 
into the flow causes disturbances to propagate upstream (columnar disturbance 
modes) which alter the velocity and density profiles there. These may accumulate to 
cause upstream blocking of some of the fluid layers if Po is sufficiently small. As the 
number of fluid layers increases, so does the range of F ,  for which this upstream 
blocked flow occurs. There are no upstream disturbances for F ,  > 1, and for F ,  < 1 
the upstream disturbances are of the rarefaction type if upstream blocking does not 
occur. The results for three and four layers show how several coexisting modes may 
interact to affect the upstream profiles. The results for sixty-four-layers provide 
theoretical support for the observational criterion (Baines 1979 b)  that blocking in 
initially uniformly stratified flow occurs when Nh,/U > 2 (N is the Brunt-Vaisala 
frequency and h, the obstacle height), provided that more than two modes are 
present. In  some situations, layered models are found to be inadequate as a 
representation of continuous stratification when one or more layers thicken to the 
extent that their discreteness is significant. 

1. Introduction 
A general method for determining the properties of stratified flow upstream and 

over long two-dimensional obstacles for quite general finite-depth flows has been 
described by Baines (1988, hereinafter referred to as I). The procedure depends on 
representing the fluid by a number of homogeneous layers. In  this paper the method 
is applied to fluids which initially have uniform horizontal velocity, and in which the 
homogeneous layers all have equal thicknesses and density increments. This is as 
good an approximation to a uniformly stratified fluid as can be achieved with a given 
finite number of layers. Upper and lower horizontal boundaries are assumed to  be 
rigid, and the volume flux is an invariant of the system. Two-, three-, four- and sixty- 
four-layered systems are studied in detail. In  all cases the overall density variation 
is taken to be small, although the model does not require this. 

It is known from laboratory observations that the introduction of an obstacle into 
a stratified flow causes upstream disturbances which alter the approaching upstream 
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flow. The situation for two-layer systems has been discussed in detail in Baines (1984) 
for a wide range of values of the ratio of the layer thickness. The contrasting case of 
uniform stratification has also been much studied theoretically because it represents 
the other extreme. Apart from the linear perturbation solutions for obstacles of small 
height, there are the steady-state solutions for obstacles of finite height obtained by 
Long (1955), using equations in a form generally known as Long’s model, and the 
nonlinear perturbation study by McIntyre (1972). The Long’s model solutions are 
only obtainable in the case of uniform stratification (or more precisely, when the 
vertical profile of kinetic energy$U2 is constant with height), and may be regarded 
as an extension to finite obstacle height of the linear solutions, which they closely 
resemble. The calculation by McIntyre was stimulating in that, as a formal 
perturbation expansion in the obstacle height, it revealed no upstream disturbances 
at all other than very weak ones generated in the tails of the lee waves. Subsequent 
laboratory experiments (Wei, Kao & Pao 1975; Baines 1977,1979a) have shown that 
the upstream disturbances observed are much stronger and are generated by 
nonlinear effects in the flow above the obstacle. These disturbances may be generated 
for quite small obstacle heights provided that the flow conditions are close to 
resonance for a long internal wave mode (on the subcritical side of resonance for 
uniform stratification), and the occurrence and magnitude of the effects are observed 
to increase with increasing obstacle height. Furthermore, the disturbances may 
accumulate to result in upstream blocking of low-level fluid. The mathematical 
situation has recently been clarified in two studies by Grimshaw & Smyth (1986) and 
Melville & Helfrich (1987), who have shown that, for fairly long obstacles of small 
height near resonance, the upstream disturbances and their generation may be 
described by equations of the forced Korteweg-de Vries type. 

The present study may be seen as being complementary to those of Grimshaw & 
Smyth and Melville & Helfrich because, whilst theirs is restricted to small obstacles 
and is not necessarily hydrostatic, the present work is necessarily hydrostatic but is 
not restricted in the height of the obstacle. The primary objective here has been to 
obtain an overall picture of the character of the flow upstream and over the obstacle 
in terms of the initial Froude number Po = U/e, (where U is the initial fluid speed 
relative to  the obstacle and 2, is the speed of the fastest internal wave mode in the 
fluid a t  rest) and H = h,/D, where h, is the maximum height of the obstacle and D 
is the total depth. The two-, three- and four-layer systems are described for the whole 
range of these parameters, and the sixty-four-layer system up to the point of 
blocking of the lowest layer for F,  > 0.2. 

The plan of the paper is as follows. The linear solutions and the corresponding 
Long’s model solutions for hydrostatic flow are described in $2. The Long’s model 
solutions for sufficiently large obstacle height, when valid, contain closed stagnant 
regions (or rather, recirculating regions which may be interpreted as stagnant). 
Solutions with such closed regions differ from those obtained with the layered models 
utilized in this paper, and the reasons for this difference are discussed. The detailed 
properties of the solutions for two, three and four layers are described in $3. The 
results for the sixty-four-layer model are given in $4, together with a discussion of 
the extent to which sixty-four-layers provide a good approximation to continuous 
stratification. The detailed characteristics of upstream blocking in these layered 
systems are described in $ 5 ,  and the results are summarized in $6, 
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2. Linear solutions for small obstacles 
We consider fluid of constant Brunt-Vaisala frequency N in a horizontal channel 

of depth D with rigid upper and lower boundaries. The total density variation A p  is 
assumed to be small so that A p / p  % 1,  where p is the mean density. The channel 
contains bottom topography z = h(x) where x is the horizontal and z the vertical 
coordinate; the topographic height is small, in that h,/D % 1, and varies slowly in 
the horizontal, so that dh/dx = O(h,/a) where 2a is the obstacle length and D / a  < 1. 
The equations governing disturbances to uniform flow in the channel are then 
linear and hydrostatic. If the flow has mean velocity U with perturbation (u, w) given 
by 

the disturbance streamfunction $ is governed by 

with 

$= Uh(x) ( z  = O ) ,  

= O  ( z  = D) .  

If the mean motion is started impulsively a t  t = 0, the initial conditions are 

$ = $p = Uh(x)( l - i )  ( t  = 0 ) ,  

where q%rp denotes potential flow, and 

(;+U;)r$) = 0 ( t  = O ) ,  

which implies initially horizontal density surfaces. 
The complete solution of this initial-value problem is 

sin Kn( 1 - z / D )  
sin Kn 

$ = Uh(x) 

h(x- (1  -K/m) Ut) h(x- (1 +K/m) Ut) 
1 (2.6) - 

m+K 

provided that K = ND/nU is not an integer (K = 1/F, for this system). This solution 
consists of a number of parts, each of which has the same horizontal structure as the 
obstacle, h(x). The first term is the steady-state part of the solution, and the 
remaining terms consist of two ‘transient ’ terms for each mode m, one propagating 
against the stream and one propagating with i t ;  of these two the former has the 
larger amplitude. If the parameter K = ND/nU lies in the range n < K < n+ 1 where 
n is any integer, modes 1 to n have propagation speeds N D l n n  greater than the fluid 
speed U ,  so that the left-ward propagating disturbance for these modes can move 
upstream relative to the obstacle. For modes n + 1,  n + 2, . . . , CO, on the other hand, 
both disturbances are found downstream. 

The interesting point about this simple solution is that it becomes singular as K 
approaches any integer n. Both the steady-state component and the larger- 
amplitude wave-component for mode n increase without limit, as K+n, and the 
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propagation speed of the latter approaches zero. If K = n, the solution to the above 
initial-value problem has the form 

$=-- Uh(;;:Ut) sin 7 nnz 

UK (h(x-(l-K/m)Ct) h(x-( l+K/m)Ut)  sin(mnz/D) 

so that it grows linearly with time. This behaviour clearly implies that nonlinear 
factors must eventually become important when K is sufficiently close to an 
integer. 

If the obstacle is semi-infinite in length with h(x) + constant as x + + 00, when 
K > 1 the upstream-propagating components also have infinite length, with the 
result that these ‘transients ’ become permanent disturbances to the upstream flow. 
This linear upstream influence is well known (e.g. Wong & Kao 1970) and is purely 
an artefact of the semi-infinite obstacle. Its origin is quite different from that of the 
upstream disturbances for finite obstacles, with which this paper is mainly concerned. 

The steady-state form of these solutions has been extended to obstacles of finite 
height by Long (1955), and the solution for the perturbation is 

-__ - ) m  7 (2.7) 
m=l m-K m+K 
m + n  

sinKn(1 - z / D )  
sin Kn( 1 - h(x)/ D ‘ 

$ = Uh(x) 

The corresponding total density field then is 

L 1 + -  Ap (1  ---+ z h sin Kn( 1 - z / D )  
P p 2 D DsinKn(1-h/D) 

Properties of this solution in terms o f K  and H = h,/D are represented in figure 1, 
for h(x) both positive (obstacles) and negative (holes). If I H I is small the solution is 
very similar to the linear steady-state solution, but as 1 H 1 increases a value H ,  is 
reached above which closed recirculating flow regions appear over the obstacle. 
Regions of figure 1 where this occurs are shaded, and two examples of such flows are 
shown in figure 2. As 1 H 1 is increased above the value H , ,  the closed recirculating 
regions in the solutions increase in thickness to fill the whole region of fluid above the 
obstacle crest, and the fluid velocity in the intervening gaps tends to infinity. The 
value of I H 1 for which this occurs is denoted by H,, and the curves are given by 

sin KR( 1 -H,) = 0. (2.10) 

When 1 H I > H ,  (in the stippled regions of figure 1) the Long’s model solutions 
cannot represent possible flow fields. 

The flow solutions with recirculating regions ( H ,  < I H 1 < H,) contain fluid in 
these regions which is statically unstable. This implies that these solutions, taken 
literally, cannot represent real flows because such flows must be unstable. For the 
interior enclosed regions (such as in figure 2b) it is possible to interpret these 
solutions as representing flows with homogeneous stagnant fluid in the enclosed 
regions. This is because the solutions there are symmetric about the vertical, and the 
enclosed fluid may be replaced by a homogeneous fluid (with the local mean density) 
without changing the external pressure field. However, this is not possible for the 
regions attached to the upper boundary, as shown in figure 2 (a). Hence this realistic 
interpretation of these solutions when H ,  < I H I < H ,  is possible for K in the ranges 
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FIGURE 1. Properties of the hydrostatic Long’s model solution in terms of K = ND/xU and H = 
h,/D. H > 0 corresponds to flow over obstacles, and H < 0 to flow over holes. In  the clear regions 
the solution is statically stable; in the shaded regions (H,  < J H I < H,) the solution contains closed 
recirculating regions, and in the stippled regions (I H I > H,) the solutions cannot represent real 
fluid flows. The curve Nh,/U = 1 is included for comparison. 

0 
b 

X 0 ” * 

FIQURE 2. Two examples of Long’s model solutions with closed regions, showing contours and 
values of the total streamfunction (@ - Uz)/UD. These contours also denote streamlines and 
constant density surfaces. The shaded region at the bottom is the obstacle, h(x) /D.  For hydrostatic 
flow, the horizontal scale is arbitrary. (a)  K = 1.5, h,/D = 0.2, ( b )  K = 2.5, h,/D = 0.18. 

2 FLM I88 
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2 < K < 3, 4 < K < 5 ,  etc. where all enclosed regions are internal, but is doubtful 
when 1 < K < 2, 3 < K < 4, etc. 

The above discussion relates to hydrostatic flows over long obstacles. If the 
obstacle is not sufficiently long for the flow to be hydrostatic so that horizontal 
dispersion terms are not negligible (specifically, a2/3x2 - az/az2), the solution to the 
linear initial-value problem is more complicated but has the same general character. 
The steady-state solution is still singular a t  K = n, although the singularity is 
weaker, with 1/ (K2-n2) i  behaviour, and it contains lee waves on the downstream 
side if K > 1 .  The two transient terms for each mode are still present and have 
‘ tadpole-like ’ character, with decaying oscillatory tails. The time-dependent solution 
obtained when K = n grows as (Nt):  rather than N t ,  and hence nonlinear effects are 
expected here also. The Long’s model solutions for short obstacles again have closed 
recirculating regions if K > 1 and the obstacle height is sufficiently large. The above 
remarks about interpreting the enclosed regions as containing stagnant homogeneous 
fluid are expected to be still applicable, although the picture is more complex because 
the recirculating flow in the enclosed regions in the solutions is not hydrostatic. 

3. Nonlinear solutions for two, three and four layers 
We now consider the application of the general procedure described in I to flows 

which consist of two, three or four homogeneous layers with equal density 
increments, and which, in the undisturbed state, have equal thickness and velocity. 
The flow resulting from the introduction of long obstacles of height h, in a channel 
with a rigid upper boundary is characterized by two dimensionless parameters : H = 
h,/D where D is the channel depth, and a Froude number 

U -- U F 
O -  U - c ,  - t l ’  

where U is the initial fluid velocity and c1 is the velocity (relative to the topography) 
of the fastest internal wave mode propagating against the stream. ll = el - U 
is the wave speed in the same stratification when the fluid is a t  rest. 

The procedure described in I involves the calculation of the steady-state flows over 
a succession of obstacles with steadily increasing height H, for a given value of F,. 
The resulting solutions are described by specifying the properties of the velocity and 
density profiles immediately upstream. The procedure is repeated for a number of 
F ,  values, so that a complete description of the properties of the system may be given 
on a single diagram in the (Fo,  H)-plane. 

3.1, Two layers 

The overall pattern of the results obtained from the model is shown in figure 3. These 
results may be derived independently by analytical methods. I n  particular, the curve 
for the onset of blocking of the lower layer is 

F ,  = 2(2H- 1)  ( 1  -H) (0 < F ,  < 0.25), (3.2) 
and the depth of the blocked layer on this curve is equal to h,. 

The general response of the two-layer system to  the introduction of an obstacle is 
as follows. When H is small, sudden commencement of motion yields two transient 
waves for the one internal wave mode, one propagating against the stream and one 
with it (as described for continuous stratification in the preceding section). If F,  > 1 
both of these are swept downstream, leaving steady flow which is everywhere 
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FIGURE 3. (F,,H)-diagram for two equal layers, showing the amplitude of the upstream 
disturbance, and the regions where the lower layer is blocked or the upstream flow is critical 
(implying zero internal wave speed). The numbers give the values of R, the lower layer thickness 
relative to its undisturbed value. The maximum value of R, R,,,, is shown on the right. 

supercritical. This situation persists as H is increased up to its maximum value 
(unity) ; steady upstream and downstream flows are the same as in the initial state, 
and the only change is that the flow over the obstacle becomes more supercritical as 
H increases. If F,  < 1,  one transient wave propagates upstream and the other 
downstream, leaving subcritical flow over the obstacle. As H imreases a point is 
reached where the flow becomes locally critical at  the obstacle crest (i.e. locally, a 
linear wave speed is zero); a further increase in obstacle height then results in 
columnar disturbances being sent upstream to alter the oncoming flow, so that the 
flow a t  the obstacle crest remains critical. These upstream disturbances are of the 
rarefaction type, since their propagation speed decreases as their cumulative 
amplitude increases. If F,  lies in the range 0.25 < F,  < 1 the upstream propagation 
speed decreases to zero as H increases, so that the flow becomes critical just 
upstream ; if H is increased further the flow is supercritical over the obstacle, and the 
upstream flow is not altered. If F,  < 0.25 the lower layer becomes blocked while the 
upstream flow is still subcritical; further increase in H results in no further change 
to the upstream flow, because only one layer now flows over the obstacle. The 
maximum change in the upstream lower layer thickness occurs a t  F,  = 0.25. This 
overall picture has been qualitatively verified with experiments for a very similar 
system in Baines (1984). 

3.2. Three layers 
The corresponding results for a system with three layers are shown in figure 4. The 
computational procedure for this system is described in I in some detail. There are 
now two internal wave modes - a fast mode, which for the undisturbed state has the 
structure of figure 5(a ) ,  and a slow mode with the structure of figure 5(b ) .  As for 
the two-layer case, for a given value of F ,  there are no upstream disturbances in the 

2-2 
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FIGURE 4. (Fo, H)-diagram for three equal layers. The flow is critical at the obstacle crest at the 
left-hand boundaries of the shaded regions (curves B A ,  G B D ) .  Layer 1 is blocked to the right of 
curve ABC, layer 2 to the right of curve DE. Mode 1 is critical upstream to the right of curve aCG. 
In the shaded regions, upstream disturbances increase with increasing H. In  each unshaded region 
the upstream flow does not vary with H, as shown in figure 6. N ,  denotes the number of layers. 

\ \ \ \ \ \  \ \  \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  

FIGURE 5. The two internal wave modes in the undisturbed three-layer system, represented by 
positions of the two interfaces: (a)  fast mode, ( b )  slow mode. 

steady state until H = h,/D is increased to the point where the flow becomes critical 
a t  the obstacle crest for the fast mode (0.575 < F ,  < 1) or the slow mode (0 < Po < 
0.575), a t  the boundary of the shaded regions of figure 4. In  each case, further 
increase in the obstacle height results in upstream columnar disturbances of the 
appropriate mode, to retain critical flow a t  the obstacle crest (in the shaded regions 
of figure 4). These upstream disturbances are again of the rarefaction type, with a 
sign such that the upstream velocity in the lowest layer is always decreased. For 
F ,  < 0.575 this process occurs for increasing H until either the lowest layer becomes 
blocked (0 < F ,  < 0.08 a t  line AB) or the slow mode becomes critical upstream (at 
line BB'). When the latter occurs, there is no change in the upstream flow as H 
increases further until the fast mode becomes critical at the obstacle crest (line BG');  
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further increases in H then result in upstream rarefactions with the structure of the 
fast mode until, again, either the lowest layer becomes blocked (line BC) or the flow 
upstream becomes critical (c = 0) with respect to the fast mode (line GC). Of course, 
the structure of these modes and their propagation speeds vary with the changing 
mean conditions. Curves of constant velocity and thickness of the bottom layer are 
shown in figure 6; these show quantitatively the effect of the upstream disturbances 
on the properties of the lowest layer. 

When the lowest layer becomes blocked, only two layers - and hence only one 
wave mode -pass over the obstacle. As figure 4 implies, this wave mode may be 
regarded as a form of the fast mode. Upstream, however, disturbances will still 
propagate on three layers, and hence two modes are still possible. In  the shaded 
region BDEG where the lowest layer is blocked, upstream disturbances must be 
composed of both modes in such a way as to leave the lowest layer at rest before and 
after both columnar disturbances have passed. Since the flow is supercritical with 
respect to the slow mode, the upstream disturbance associated with this mode, a t  
least, must have the form of a jump, and the behaviour of the system is therefore 
quite complicated. However, as described in I, it is simpler to make the 
approximation of ignoring the inertia terms in the lowest (stagnant) layer, so that the 
latter is isostatic : this has the effect of combining the two upstream disturbances so 
that they may be represented by a single mode. With this approximation and some 
further modifications as outlined in I ,  the flow properties of the system when layer 
1 is blocked may be obtained. The upstream disturbances then take the form of a 
jump in region BDEF, and a jump plus rarefaction in the region FEG. Similarities 
between figure 4 and the two-layer diagram figure 3 are evident, with the ‘ two-layer 
pattern’ appearing three times in figure 4. 

Experimental observations of the thickness of the blocked lowest layer in a three- 
layer system have been made and compared with values computed with the above 
model. Some examples of these flows are shown in figure 7. The experimental 
procedure parallels that described in Baines (1984), but with the obstacle towed 
along the bottom of the 9.17 m long tank. Fluid flow is incident on the obstacle from 
left to right, and the photographs were taken after the flow reached steady state in 
the field of view, Mixtures of kerosene and freon were used for the top and bottom 
layers, with fresh water as the middle layer. Total density variation from top to 
bottom was approximately 1 & 0.02 g Evaporation of freon from the uppermost 
layer caused some slight variation in the density of this layer, and Apl/Ap2 (see I for 
notation) varied in the range 0.90-1.5. Observations were made with H = 0.5 and 
0.75, and the results are shown in figure 8. The comparison is generally quite 
good. 

3.3. Four layers 

The (Fo, H)-diagram for the four-layer system is shown in figure 9. There are now 
three internal wave modes in the system and, as before, the upstream disturbances 
are of the rarefaction type for each of these modes, provided that the lowest layer is 
not blocked. Similarities to the two- and three-layer systems are evident. Apart from 
the extra mode, before blocking of the lowest layer occurs the four-layer system has 
the following additional feature. In  the range 0.09 < F,  < 0.15, the topmost layer 
(layer 4) becomes ‘blocked’ whilst the bottom layer (layer 1) still has motion. Since 
negative fluid velocities upstream may be discounted (they are never observed in 
experiments unless externally imposed ; this is embodied in the computational 
procedure as assumption A in I), the system must respond to further increases in the 
obstacle height by generating mode 1 upstream in conjunction with mode 2, a t  a 
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FIGURE 6. For the three-layer system, contours of (a) constant upstream velocity u1 in the lowest 
layer; the numerical values denote u J U .  ( b )  constant upstream lowest-layer thickness d, ; the 
numerical values denote d, relative to its undisturbed value, +D. Dashed lines denote the 
boundaries of the hatched regions in figure 4. Note that, after it becomes blocked, the lowest layer 
decreases in thickness as H increases. The points with the letters a, b, c and d denote the flow states 
for the corresponding experiments shown in figure 7 .  
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FIQURE 8. Comparison between observed (points) and theoretical values (curve) of the 
upstream thickness of the lowest layer for H = 0.5. 

H 

FIQURE 9. The (Po, H)-diagram for four layers (compare with figure 4). Upstream disturbances 
increase with increasing H in the shaded regions. Layer 1 is blocked to the right of curve ABCD, 
layer 2 to the right of EFG, and layer 3 to the right of JL. In the double-shaded region, layer 4 is 
blocked but layer 1 is not. The locations of the boundaries shown dashed are approximate. 
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FIGURE 10. For the four-layer system, contours of (a) constant upstream velocity u, in the lowest 
layer ; the numerical values denote u J U .  (b) constant upstream lowest layer thickness d, ; the 
numerical values denote d, relative to its undisturbed value, $0. Compare with figure 6 for three 
layers. 

sufficient amplitude to keep layer 4 stationary. This occurs in the double-shaded 
region of figure 9 and ceases when layer 1 becomes blocked. 

Curves of constant velocity and thickness of the bottom layer are shown in figure 
10. When the lowest layer became blocked the isostatic-bottom-layer approximation 
(as used for three-layer systems) was employed, but because of uncertainties in 
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accuracy some of the boundary curves in figure 9 are shown dashed. The upstream 
disturbances resulting from further increases in the obstacle height again have the 
jump or jump-plus-rarefaction form, when either one or two layers are blocked. The 
form of figure 9 may have been anticipated from the two- and three-layer results, and 
the increasingly complex patchwork structure of this diagram as the number of 
layers is increased to five, six or more may be readily envisaged. 

4. Nonlinear solutions for sixty-four-layers, as an approximation to 
continuous stratification 

We now describe the application of the general method to a system of sixty-four 
uniform layers with equal density increments. As before, the layers initially have 
equal thickness and velocity, so that the system approximates a continuously 
stratified fluid in uniform motion with constant Brunt-Vaisala frequency N ,  
provided that the overall density variation is small. The speed of the lowest internal 
wave mode is N D / n ,  so that F, = U n / N D  = 1 / K .  

From application of the model, the limits of purely sub- and supercritical flow may 
be obtained. For F, > 1, the flow is again supercritical everywhere for all obstacle 
heights and no disturbances are found upstream, whether transient or steady state. 
For F, < 1,  the numerically determined boundary of subcritical flow for the nth 
mode is observed to have the equation 

(n = 1 ,2 ,3 ,  ...) 

This saw-tooth curve (where mode n is critical a t  the obstacle crest) is shown as the 
solid line in figure 11,  and the line Nh/U = in constitutes an envelope for this curve. 
Only the lowest 5 modes have been studied numerically (i.e. F ,  > 0.2) and the 
extension of this equation to smaller F, is due to logical induction. For the layered 
model the curve must depart from (4.1) as F, becomes small. Also shown in figure 11 
is the curve for the onset of overturning and enclosed regions (H = H,) obtained from 
Long’s model for continuous stratification, as described in 92. This curve lies to the 
left of the critical-flow curve (in some regions only slightly), and hence the Long’s 
model solutions without overturning are always subcritical everywhere. In the region 
where the Long’s model solutions are statically stable, comparison between these two 
solutions shows that they agree reasonably well, e.g. figure 12(a). However, they 
depart significantly as H increases above H ,  (the value for overturning for Long’s 
model), even though the layered solution may still be subcritical, e.g. figure 12(b). In 
the Long’s model solutions for 2 < K < 3, etc., where H ,  < H < H ,  the enclosed 
stagnant regions split the flow into separating streams (e.g. figure 1 b ) ,  in each of 
which the flow will be supercritical with respect to the relevant mode. In contrast, 
the layered solutions for these values of H show no ‘enclosed regions’ or unusual 
behaviour. For the case of continuous stratification, therefore, it appears that in the 
parameter range H ,  < H < H ,  where enclosed regions in the Long’s model solution 
occur with 2 < K < 3 , 4  < K < 5, etc. it  appears that two different solutions may be 
possible if the enclosed regions are interpreted as containing homogeneous stagnant 
fluid. 

As was the case for the number of layers N ,  = 2, 3 and 4, when N ,  = 64 the 
upstream disturbances generated when h, is increased above the critical height have 
dclda < 0 (see I for notation), so that the disturbances are of the rarefaction type. 
As shown in the previous section, if F,  > 0.25 ( N ,  = 2), 0.42 ( N ,  = 3) or 0 .51  (N ,  = 4) 
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H 

FIGURE 11. The limits of subcritical flow for sixty-four-layers (solid lines). The flow is everywhere 
subcritical if it  is less than the values given by this saw-tooth curve. For these low-order modes the 
criteria are virtually identical to those for continuous stratification. The curves marking the onset 
of the enclosed regions in the Long’s model solutions (i.e. the curves H = H ,  in figure 1) are also 
shown (dashed lines) ; for larger H the subcritical layered solutions and the Long’s model solutions 
differ, as shown in figure 12 for the two points denoted by crosses. For Fo > I ,  the flow is 
everywhere supercritical for all H .  
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FIGURE 12. Comparison between the velocity profiles a t  h = h, for the layered solution and the 
Long’s model solution (shown dashed) for (a)  F,  = 1/K = 0.53, H = 0.161; ( b )  F,  = 0.53, H = 
0.229. These points are marked by crosses in figure 11. 
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FIGURE 13. The region of (F,,H)-space where the flow becomes critical upstream with respect to 
the lowest mode, as a function of the number of layers N, = 12,32 and 64. The angled straight lines 
denote the limit of subcritical flow, as shown in figure t i .  Note the similarity to N ,  = 2 ,  3 and 4. 

the lowest layer is never blocked for any value of H ,  and the amplitude of the 
upstream disturbance is limited by the speed of the fastest mode upstream 
decreasing to zero. As N ,  increases further this region contracts upwards as shown in 
figure 13, but even for N ,  = 64 it is still significant. The persistence of this 
phenomenon for large N ,  is a t  first sight rather surprising, as it implies that the 
difference between sixty-four-layers and continuous stratification is substantial in 
the parameter range 0.92 5 Po < 1. The reasons for this are discussed below. 

The structure of small-amplitude disturbances in continuously stratified fluid with 
velocity U ( z )  and stratification N ( z )  may be expressed in the form 

$ = E $ ( Z )  eik(z-ct) (4.2) 

where $ ( 2 )  is governed by the Taylor-Goldstein equation 

)$ = 0, 
d2$+ N 2  d2U/dz2 
dz2 ( ( U - C ) ~  U - c  
- ___- (4.3) 

with $ = o  a t z = ~ , ~ ,  

where the wave speed c is an eigenvalue. If the disturbance takes the form of a 
columnar disturbance mode of amplitude 8, the resulting horizontal velocity and 
density profiles are 

dlj; u = U , ( Z ) - € - ,  
dz 

where the subscript zero denotes initial values. If the values U ,  and N o  are constant, 
as is the case for the flows under discussion here, then (4.3) has the solutions 

nm 
$ = s i n 7 ,  c = c, = - U o t - l )  (n  = 1,2,3,  ...), (4.5) 

where, as in $2, K = ND/nUo. If (4.4) for some specific mode m is substituted into 
(4.3) and the resulting profiles used for U ,  N in (4.3), then (4.5) is again a solution 
provided n = m, with error of O(e2) .  This implies that dclda (see I) is zero when U and 
N are constant, and that the structure of the eigenfunction also does not change with 
amplitude initially. In fact, from the numerical computations the structure of the 
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velocity profile remains sinusoidal to a very good approximation for quite large 
amplitudes as H increases; also, the eigenvalues decrease slowly except when F ,  > 
0.95, where the initial decrease is slow but subsequently becomes more rapid until 
c = 0. 

Internal wave modes n =I= m (the mode of the existing upstream columnar 
disturbance) are affected much more substantially as columnar mode m increases in 
amplitude - the modal structure becomes progressively more non-sinusoidal, and the 
speed of propagation may vary significantly. In  particular, for 0.5 < F,  < 0.95, as 
the amplitude of the columnar mode 1 upstream increases, the speed c, of the second 
mode (which is initially positive, i.e. directed downstream) decreases to zero and then 
becomes negative. However, if columnar mode 2 is introduced upstream, this has the 
effect of increasing the speed c, (in the downstream direction). In  the present 
circumstances, the equations for steady-state flow show that a finite negative value 
for c ,  is not possible (as this would imply critical flow for mode 2 on the forward-face 
of the obstacle), so that the amplitude of mode 2 upstream must be adjusted so that 
c2 = 0 there. Consequently, as H increases, both modes 1 and 2 increase upstream, 
with c ,  = 0 upstream and c1 = 0 a t  the obstacle crest, until the lowest layer becomes 
blocked. The program based on the general method described in I achieves this by 
alternating between the two modes for the upstream disturbance, depending on 
which mode has the smallest negative eigenvalue. The locations in terms of F,, H 
where mode 2 first appears and where the lowest layer becomes blocked are indicated 
in figure 14, which displays the main results of this paper. Note that the upstream 
disturbance increases rapidly with H ,  ranging from zero (where the flow first becomes 
critical at the obstacle crest) to ‘unity’ (blocked flow) over a typical range of H of 
0.05. 

< F ,  < $, as H increases above the critical height the mode generated 
upstream is mode 2. For 0.46 < F, < 0.5, as H and the upstream amplitude of mode 
2 increase, c, eventually increases to zero ; further increase in H then causes no change 
in the upstream motion until mode 1 becomes critical at  dhldz = 0. On the (F, ,H)-  
diagram, this occurs at a continuation of the curve for mode 1 critical for F ,  > 0.5. 
This behaviour parallels that of mode 1 in the range 0.95 < F ,  < 1 ,  and it is found 
again for mode 3 in the range 0.31 < F ,  < 0.333. For 0.31 < F ,  < 0.46, c2 does not 
become zero, and the motion is governed by modes 2 and 3, in a manner paralleling 
that for modes 1 and 2 for 0.46 < F ,  < 0.9. Similar behaviour occurs with modes 3 
and 4 when F ,  < 0.31. 

Comparisons have been made between these results for N ,  = 64 and some 
corresponding results for N ,  = 128. Over most of the range of F ,  the comparison is 
quite good. One systematic difference exists, however : the region of upstream critical 
flow for 0.95 < F,  < 1 for N ,  = 64 is reduced for N ,  = 128, continuing the trend 
shown in figure 13, and similar reductions were also found in the corresponding 
regions for modes 2 (0.46 < F,  < 0.5) and 3 (0.31 <Po < 0.333). One therefore 
expects these ranges to shrink to zero as N ,  tends to infinity. We may infer that sixty- 
four-layers is not a good approximation to continuous stratification if F ,  lies in these 
ranges but it should be satisfactory elsewhere, a t  least up to the point of 
blocking. 

Also shown in figure 14 is the line Nh,/U = 2. We note that this acts as an 
envelope for the blocking curve, and almost coincides with it in many places. This is 
consistent with the experimental results of the author (Baines 1979b) where 
upstream blocking (albeit for short obstacles) was observed to occur in initially 
uniform stratification for NhJU 2 2 when F,  ,< 0.5. 

For 
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FIGURE 14. The (F,,H)-diagram for N, = 64, showing the limit of subcritical flow (as in figure l l ) ,  
the regions (hatched) where the upstream disturbance consists of a single mode, and the curve 
marking the onset of blocking of the lowest layer. For F, < 0.4 the blocking curve is approximate, 
due to scatter in the numerical results. The dashed line (bottom right) denotes Nh,/U = 2. The line 
marked u / D  x 1.5 denotes the onset of upstream disturbances from experiments in uniformly 
stratified fluid (Baines 1 9 7 9 ~ )  with this approximate value of a/D. 

The numerical results for F ,  < 0.3 are reasonably consistent but show some scatter 
when the upstream disturbance is composed of more than one mode. This is due to 
the fact that a very small eigenvalue is usually present which may be positive or 
negative, and the computational procedure is sensitive to this. This constitutes a 
limitation on the procedure in its present form. 

Upstream velocity profiles a t  the point of blocking of the lowest layer are shown 
in figure 15 for a range of values of F,, together with a representative profile for the 
range 0.95 < F ,  < 1 (F, = 0.98) showing the maximum disturbance upstream. The 
changing dominant modal structure with F ,  is evident in these profiles. It is also clear 
that the reason why sixty-four layers do not always represent continuous 
stratification adequately is because the slow-moving layers become very broad when 
the upstream disturbance becomes large, so that their discrete nature becomes much 
more significant. Consequently, the departure from the dynamical properties of a 
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FIGURE 15. Some representative upstream velocity profiles for the sixty-four-layer model. (a )  at  
the point of maximum upstream disturbance for F ,  = 0.98 (i.e. H 3 0) ; at the point of blocking for 
(6) F,  = 0.89, (c) F ,  = 0.56, (d )  F ,  = 0.45, (e) F ,  = 0.32. 
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continuous profile is hardly surprising, and from figure 14 we might expect the 
system to behave like a system with a smaller total number of layers as the 
disturbance amplitude increases. 

5. The phenomenon of blocking 
The nature of upstream blocking in stratified fluids has been obscure until 

recently. We now know that, in large-Reynolds-number flows, upstream blocking is 
a wave phenomenon due to propagating columnar disturbance modes which may 
have jump or rarefaction character. In the layered systems described in this paper, 
the following characteristics of the formation of an upstream-blocked lowest layer 
may be noted. 

As the thickness of the lowest layer decreases to zero a t  the obstacle crest with 
increasing obstacle height, the speeds of one internal wave mode (directed both 
upstream and downstream) converge to the speed of the fluid in this thinning layer ;t 
this mode then disappears when the layer is no longer present. Decreasing lowest- 
layer velocity upstream implies decreasing transport and decreasing thickness of this 
layer over the obstacle, but the fluid velocity at the obstacle crest may still be finite 
as the layer thickness vanishes. An exception to this is the range of the smallest 
values of F,, where the upstream disturbance causing blocking consists only of the 
highest (slowest) mode (this happens for N ,  = 2, 3 and 4 but may not apply to N ,  = 
64). At the obstacle crest it is this mode which is critical, and it is this mode which 
must also vanish as the lowest layer disappears. Hence, as the lowest-layer thickness 
approaches zero a t  the crest, under these circumstances the fluid speed there must 
also vanish. Applying Bernoulli’s equation to the lowest layer when the velocity is 
small then suggests that, a t  the point of blocking, the depth of the layer upstream 
is equal to the height of the obstacle. This is in fact the case for N ,  = 2, 3, and 4, for 
the appropriate ranges of F,. 

For larger values of F,, the depth of the blocked layer a t  the point of blocking 
d, increases with F ,  from a value somewhat less than h, to a value equal to or 
slightly greater than h,, over the range of dominance of each particular mode. The 
values of d,/h, for three, four and sixty-four-layers are shown in figure 16. In the 
range studied, for N ,  = 64, d,/h, varies between 0.5 and 1. The computed results for 
N ,  = 64 show some scatter due to the nature of the numerical procedure, and the 
curves presented are mean values. In  fact, the depth of the blocked layer for N ,  = 
64 is remarkably independent of h, over the range investigated (F,  > 0.23), and 
most numerical values satisfy 

d,/D = 0.12+0.02, 

with a slight upward trend with F,. Another point of interest is the mean density 
gradient in the blocked fluid ; a t  the point of blocking in these layered models this 
gradient will be zero, but it will increase as the obstacle height increases and higher 
layers also become blocked. It is difficult to draw general inferences from the three- 
and four-layer results, but it is obvious that the blocked fluid will always be much 
more weakly stratified than the initial undisturbed fluid. 

t In fact, as may be seen from (3.8) of I, if the thickness of any fluid layer becomes vanishingly 
small, the two wave speeds of one mode converge to the fluid speed of that layer, and this mode 
vanishes if the layer vanishes. 
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FIQURE 16. Depth of the blocked bottom layer d, at the point of blocking, relative to h, as a 
function of F,  for three, four and sixty-four-layers. In the hatched regions the curve is approximate 
as there is some scatter in the numerical results. The vertical dashed lines when N ,  = 64 correspond 
to the Po values where the ‘layer 1 blocked’ curve of figure 14 is nearly horizontal, implying a 
change in the dominant mode. 

6. Summary and discussion 
We have examined the flow of a system of homogeneous fluid layers of finite depth 

over long obstacles with the hydrostatic approximation, using the model and 
procedure described in Baines (1988). The study may be seen as a contribution to  
stratified hydraulics. The resulting flows have been calculated as initial-value 
problems, with the obstacle introduced into fluid in which the velocity is initially 
uniform with height and the layers have equal thickness and equal density 
increments. The results from these calculations may be summarized as follows. There 
are no upstream disturbances in the resulting flow if F ,  > 1, and the steady-state flow 
is everywhere supercritical. For F, < 1 the upstream disturbances initially have the 
form of rarefactions, regardless of the number of (equal) layers. For two fluid layers 
the results are relatively simple and are virtually the same as those described in 
Baines (1984) for a slightly different system: as the obstacle height increases, for 
F ,  < 0.25 the lower layer eventually becomes blocked, but for 0.25 < F ,  < 1 the 
upstream flow eventually becomes critical and the disturbance reaches a maximum 
amplitude which does not block the lower layer. For the three-layer system, 
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upstream blocking of the lowest layer may be achieved if F ,  < 0.41, and for the 
middle layer if F, < 0.3. Laboratory experiments illustrating blocking in three-layer 
flows are consistent with these results. For four layers, the lowest layer may become 
blocked if F ,  < 0.52, the second if F,  < 0.145 and the third if F ,  < 0.065, if H is 
sufficiently large. The four-layer system has the surprising property that, over a 
significant range of values of F ,  and H ,  layer 4 (the uppermost) is blocked upstream 
(i.e. is stagnant) but layers 1, 2 and 3 are not. 

The sixty-four-layer model is intended as an approximation to continuous 
stratification. In  the range investigated, 0.2 < F ,  < 1, the approximation is quite 
good provided that the upstream disturbances are small. As they increase in 
amplitude the slower-moving layers become much thicker, and this causes the 
velocity and density profiles to depart substantially from those of a continuous 
stratification, even if only one mode is present upstream. Once the flow becomes 
critical a t  the obstacle crest, the rate of increase in amplitude of the upstream 
disturbance is very rapid, in that a relatively small change in H (say 0.05) can result 
in the upstream disturbance increasing from zero to unity (implying blocked fluid). 
For 0.95 < Po < 1,  however, the blocking does not occur owing to the finite number 
of layers, and the flow becomes critical upstream in the same manner as for two, three 
or four layers. This behaviour also occurs for higher modes at lower F,, and suggests 
that the representation of continuous stratification by such a layered system may be 
imperfect for large-amplitude disturbances over a range of F, which is just subcritical 
for each mode. 

Some laboratory experiments with towed obstacles and continuously stratified 
fluid with constant N were carried out to investigate the general relevance of the 
present results. The procedure and techniques were the same as those described in 
Baines (1979a,b). In experiments of this nature, hydrostatic flow is only achieved 
with very long obstacles, namely those with lengths much greater than the channel 
depth. Such long obstacles result in long upstream transients which take a long time 
to leave the vicinity of the obstacle. Separating the transient from the steady-state 
upstream phenomena is consequently much more difficult than for shorter obstacles, 
and the tank used is not sufficiently long to permit this separation, if the obstacles 
are long enough to guarantee hydrostatic flow. Hence the obstacles used in these 
experiments were somewhat shorter, so that a quantitative comparison between the 
observations and the hydrostatic theory is not warranted. However, the flows were 
more nearly hydrostatic than those studied in Baines (1979~)  in that a / D  was larger 
( a  is the obstacle half-length), and the upstream amplitudes were observed to be 
substantially closer to those predicted by the present model. It is generally observed 
that, for uniform velocity and stratification, upstream disturbances appear for 
smaller obstacle heights in non-hydrostatic flows than for hydrostatic ones. 

We have investigated the relationship between the present solutions with layered 
models and the Long’s model solutions with continuous stratification, for the same 
values of F ,  and H .  These solutions appear to agree quite well when F, and H are such 
that the Long’s model solutions are statically stable, but they differ substantially 
when the latter are unstable and closed flow regions occur. Such enclosed regions do 
not arise in the layered solutions. In the non-hydrostatic laboratory experiments, the 
large-amplitude Long’s model solutions per se have not been observed, although 
closed stagnant regions are common when the obstacle is sufficiently large. The 
reason for this may be that the flows are difficult to set up ; they may also be unstable 
since, as Long (1955) showed, Ri < a in these flows even before stagnant regions are 
established. 
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A significant result of this study is the corroboration from the sixty-four-layer 
results that  the criterion for blocking in uniformly stratified flow is N h / U  2 2,  
provided two or more modes are present. This criterion seems to be much less 
sensitive to the modal structure than that for the onset of the upstream disturbances, 
which has a saw-tooth pattern on the (F,,, H)-diagram. 

The authors are most grateful to Julie Golds, who played a substantial part in the 
development of the numerical model in the early stages of this work, to David 
Murray for assistance with the experiments, and to Carol Drew for typing the 
manuscript. 
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